inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diptikanta Swain and T. N. Guru Row*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India

Correspondence e-mail: ssctng@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (S–O) = 0.002 Å R factor = 0.013 wR factor = 0.038 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$Rb_2Mn_2(SO_4)_3$, a new member of the langbeinite family

The structure of a new langbeinite, dirubidium dimanganese trisulfate, $Rb_2Mn_2(SO_4)_3$, has been determined and is shown to have cubic symmetry akin to the other members of the langbeinite family. The sturucture contains SO_4 tetrahedra corner-linked to MnO_6 octahedra, generating a three-dimensional network. The Rb atoms are found in the cavities of this network.

Comment

 $Rb_2Mn_2(SO_4)_3$ belongs to the langbeinite family, having the general formula $A_2B_2(XO_4)_3$, where A = Rb, Li, NH₄, Tl, K or Cs, B = Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd with X = S, Se or Mo. The name originates from the natural langbeinite $K_2Mg_2(SO_4)_3$, the crystal structure of which was first solved by Zemann & Zemann (1957). A new type of langbeinite was synthesized by replacing the SO_4 group by a BeF₄ group (Guelylah et al., 1996), which exhibited several interesting low-temperature phase transitions. Langbenites are well known to exhibit ferroelectric and ferroelastic phase transitions with temperature. There are three types of langbeinites; type-I has a room-temperature cubic structure and undergoes several phase transitions to a final orthorhombic crystal form (space group $P2_12_12_1$) via a monoclinic crystal system (space group $P2_1$) followed by a triclinic crystal system (space group P1) with lowering of temperature. Type-II langbeinites show a single phase transition when cooled, resulting in an orthorhombic crystal form (space group $P2_12_12_1$). Type-III langbeinite remains invarient with lowering of temperature.

Figure 1

Packing diagram, viewed down the c axis, depicting the three-dimensional network of MnO_6 octahedra and SO_4 tetrahedra with Rb atoms in the cavities.

Received 12 May 2006 Accepted 24 May 2006

© 2006 International Union of Crystallography

All rights reserved

However, in a recent study Nalini & Guru Row (2002) have shown that $Rb_2Cd_2(SO_4)_3$ shows no intermediate triclinic form in Type-I. The title compound is isostructural with the rest of the known langbeinite family, with MnO_6 octahedra cornershared with the SO₄ tetrahedra, as shown in Fig. 1, forming a three-dimensional network. Rb2 is nine-coordinate, whereas Rb1 is 12-coordinate, with both atoms residing in the cavities.

Experimental

The title compound was synthesized by slow evaporation at 393 K of an aqueous solution containing equimolar amounts of Rb_2SO_4 and $MnSO_4$. The evaporation rate was slowed down considerably by sealing the 5 ml beakers containing the solution in a thermostat.

Crystal data

 $\begin{aligned} & \text{Rb}_2 \text{Mn}_2(\text{SO}_4)_3 \\ & M_r = 569.03 \\ & \text{Cubic}, \ P2_1 3 \\ & a = 10.2140 \ (7) \text{ Å} \\ & V = 1065.58 \ (13) \text{ Å}^3 \\ & Z = 4 \end{aligned}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.070, T_{\max} = 0.160$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.013$ $wR(F^2) = 0.038$ S = 1.23873 reflections 59 parameters $w = 1/[\sigma^2(F_o^2) + 0.4692P]$ where $P = (F_o^2 + 2F_c^2)/3$ $D_x = 3.547 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 12.10 \text{ mm}^{-1}$ T = 294 (2) K Block, colourless $0.4 \times 0.2 \times 0.15 \text{ mm}$

8890 measured reflections 873 independent reflections 860 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 28.6^{\circ}$

 $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0102 (5) Absolute structure: Flack (1983), 339 Friedel pairs Flack parameter: 0.013 (8)

Table 1

Selected bond lengths (Å).

Rb1-O4	2.969 (2)	Mn1-O2 ⁱⁱ	2.176 (2)
Rb1–O2 ⁱ	3.122 (2)	Mn2-O4 ^{vi}	2.150 (2)
Rb1-O1	3.229 (2)	Mn2-O1 ^{vii}	2.173 (2)
Rb1–O1 ⁱⁱ	3.257 (2)	S1-O4	1.463 (2)
Rb2–O3 ⁱⁱⁱ	2.948 (2)	S1-O2	1.466 (2)
Rb2–O2 ^{iv}	3.087 (2)	S1-O1	1.475 (2)
Rb2–O1 ^{iv}	3.196 (2)	S1-O3	1.477 (2)
Mn1-O3 ^v	2.155 (2)		

Symmetry codes: (i) z, x, y - 1; (ii) $y - \frac{1}{2}, -z + \frac{3}{2}, -x + 1$; (iii) x - 1, y, z; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-z + \frac{1}{2}, -x + 2, y - \frac{3}{2}$; (vi) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$; (vii) $-y + \frac{3}{2}, -z + 1, x - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *PLATON* (Spek, 2003).

The authors thank the Department of Science and Technology, India (IRHPA–DST), for providing the CCD facility at the Indian Institute of Science.

References

Brandenburg, K. (1999). *DIAMOND*. Version 2.1c. Crystal Impact GbR, Bonn, Germany.

Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Guelylah, A., Breczewski, T. & Madariaga, G. (1996). Acta Cryst. C52, 2951– 2954.

Nalini, G. & Guru Row, T. N. (2002). Chem. Mater. 14, 4729-4735.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36 7-13.

Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409-413.